Рейтинг:   / 4
ПлохоОтлично 

Cимметричные, несимметричные, ортогональные и обратные матрицы.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Квадратная матрица $A$ называется симметричной, если $A^T=A.$ Квадратная матрица $B$ называется кососимметричной, если $B^T=-B.$ 

Квадратная матрица $A$ называется вырожденной (особенной), если ее определитель равен нулю, и невырожденной (неособенной) в противном случае. Если $A$ - невырожденная матрица, то существует и притом единственная матрица $A^{-1}$ такая, что $AA^{-1}=A^{-1}A=E,$ где $E-$ единичная матрица (то есть такая, на главной диагонали которой стоят единицы, а все остальные элементы равны нулю). Матрица  $A^{-1}$ называется обратной к матрице $A.$

Основные методы вычисления обратной матрицы:

Метод присоедененной матрицы. Присоедененная матрица $A^*$ определяется как транспонированная к матрице, составленной из алгебраических дополнений соответствующих элементов матрицы $A.$ Таким образом,

$A^*=\begin{pmatrix}A_{11}&A_{21}&...&A_{n1}\\A_{12}&A_{22}&...&A_{n2}\\\vdots&\vdots&\ddots&\vdots\\A_{1n}&A_{2n}&...&A_{nn}\end{pmatrix}.$

Справедливо равенство

$A^*A=AA^*=\det A\cdot E.$

Отсюда следует, что если $A-$ невырожденная матрица, то

$A^{-1}=\frac{1}{\det A}A^*.$

Примеры:

Методом присоедененной матрицы найти обратные для следующих матриц:

3.106. $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}.$

Решение.

$\det A=\begin{vmatrix}1&2\\3&4\end{vmatrix}=1\cdot 4-2\cdot 3=4-6=-2\neq 0.$

Поскольку определитель не равен нулю, то данная матрица невырождена и обратная матрица существует.

Найдем алгебраические дополнения соответствующих элементов матрицы $A:$

$A_{11}=(-1)^{1+1}\cdot4=4;$

$A_{12}=(-1)^{1+2}\cdot3=-3;$

$A_{21}=(-1)^{2+1}\cdot2=-2;$

$A_{22}=(-1)^{2+2}\cdot1=1.$

Отсюда находим присоедененную матрицу:

$A^*=\begin{pmatrix}4&-2\\-3&1\end{pmatrix}.$

$A^{-1}=\frac{1}{\det A}A^*=\frac{1}{-2}\begin{pmatrix}4&-2\\-3&1\end{pmatrix}=\begin{pmatrix}-2&1\\ 3/2&-1/2\end{pmatrix}. $ 

Ответ: $\begin{pmatrix}-2&1\\3/2&-1/2\end{pmatrix}.$ 

 

3.109. $\begin{pmatrix}2&5&7\\6&3&4\\5&-2&-3\end{pmatrix}.$

Решение.

 

$\det A=\begin{vmatrix}2&5&7\\6&3&4\\5&-2&-3\end{vmatrix}=2\cdot 3\cdot (-3)+6\cdot(-2)\cdot 7+5\cdot 4\cdot 5-$ $=5\cdot3\cdot7-2\cdot (-2)\cdot4-5\cdot 6\cdot (-3)=-18-84+100-105+16+90=$ $=-1\neq 0.$

 Поскольку определитель не равен нулю, то данная матрица невырождена и обратная матрица существует.

 Найдем алгебраические дополнения соответствующих элементов матрицы $A:$

 $A_{11}=(-1)^{1+1}\cdot\begin{vmatrix}3&4\\-2&-3\end{vmatrix}=3\cdot(-3)-4\cdot(-2)=-9+8=-1;$

 

$A_{12}=(-1)^{1+2}\cdot\begin{vmatrix}6&4\\5&-3\end{vmatrix}=-(6\cdot(-3)-4\cdot5)=-(-18-20)=38;$

 

$A_{13}=(-1)^{1+3}\cdot\begin{vmatrix}6&3\\5&-2\end{vmatrix}=6\cdot(-2)-5\cdot3=-12-15=-27;$

 

$A_{21}=(-1)^{2+1}\cdot\begin{vmatrix}5&7\\-2&-3\end{vmatrix}=-(5\cdot(-3)-7\cdot(-2))=-(-15+14)=1;$

 

$A_{22}=(-1)^{2+2}\cdot\begin{vmatrix}2&7\\5&-3\end{vmatrix}=2\cdot(-3)-7\cdot5=-6-35=-41;$

 

$A_{23}=(-1)^{2+3}\cdot\begin{vmatrix}2&5\\5&-2\end{vmatrix}=-(2\cdot(-2)-5\cdot5)=-(-4-25)=29;$

 

$A_{31}=(-1)^{3+1}\cdot\begin{vmatrix}5&7\\3&4\end{vmatrix}=5\cdot4-7\cdot3=20-21=-1;$

 

$A_{32}=(-1)^{3+2}\cdot\begin{vmatrix}2&7\\6&4\end{vmatrix}=-(2\cdot4-7\cdot6)=-(8-42)=34;$

 

$A_{33}=(-1)^{3+3}\cdot\begin{vmatrix}2&5\\6&3\end{vmatrix}=2\cdot3-5\cdot6=6-30=-24;$

Отсюда находим присоедененную матрицу:

 $A^*=\begin{pmatrix}-1&1&-1\\38&-41&34\\-27&29&-24\end{pmatrix}.$

 

$A^{-1}=\frac{1}{\det A}A^*=\frac{1}{-1}\begin{pmatrix}-1&1&-1\\38&-41&34\\-27&29&-24\end{pmatrix}=\begin{pmatrix}1&-1&1\\-38&41&-34\\27&-29&24\end{pmatrix}. $ 

 

Ответ: $\begin{pmatrix}1&-1&1\\-38&41&-34\\27&-29&24\end{pmatrix}.$

 

 

3.121. Решить матричное уравнение.

$\begin{pmatrix}1&2\\3&4\end{pmatrix}X=$ $\begin{pmatrix}3&5\\5&9\end{pmatrix}.$

Решение.

Умножим обе части уравнения слева на $\begin{pmatrix}1&2\\3&4\end{pmatrix}^{-1}:$

$\begin{pmatrix}1&2\\3&4\end{pmatrix}^{-1}$ $\begin{pmatrix}1&2\\3&4\end{pmatrix}X=$ $\begin{pmatrix}1&2\\3&4\end{pmatrix}^{-1}\begin{pmatrix}3&5\\5&9\end{pmatrix}\Leftrightarrow$

 

 $EX=\begin{pmatrix}1&2\\3&4\end{pmatrix}^{-1}\begin{pmatrix}3&5\\5&9\end{pmatrix}\Leftrightarrow$ 

 $X=\begin{pmatrix}1&2\\3&4\end{pmatrix}^{-1}\begin{pmatrix}3&5\\5&9\end{pmatrix}.$ 

В номере 3.106 мы находили  $\begin{pmatrix}1&2\\3&4\end{pmatrix}^{-1}:$ 

$A^{-1}=\begin{pmatrix}-2&1\\ 3/2&-1/2\end{pmatrix}. $ 

Таким образом,  $X=\begin{pmatrix}-2&1\\3/2&-1/2\end{pmatrix}\begin{pmatrix}3&5\\5&9\end{pmatrix}=\begin{pmatrix}-2\cdot3+1\cdot5&-2\cdot5+1\cdot9\\3/2\cdot3-1/2\cdot5&3/2\cdot5-1/2\cdot9\end{pmatrix}=$ $=\begin{pmatrix}-1&-1\\2&3\end{pmatrix}.$

Ответ: $\begin{pmatrix}-1&-1\\ 2&3\end{pmatrix}. $ 

 

 Метод элементарных преобразований. Элементарными преобразованиями матрицы называются следующие:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответсвующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Для данной матрицы $A$ $n-$го порядка построим прямоугольную матрицу $\Gamma_A=(A|E)$ размера $n\times 2n$, приписывая к $A$ справа единичную матрицу. Далее, используя элементарные преобразования над строками, приводим матрицу $\Gamma_A$ к виду $(E|B),$ что всегда возможно, если $A$ невырождена. Тогда $B=A^{-1}.$

 

Пример.

3.115. Методом элементарных преобразований найти обратную для следующей матрицы:

$\begin{pmatrix}1&2&2\\2&1&-2\\2&-2&1\end{pmatrix}.$

Решение.

Образуем матрицу $\Gamma_A:$

$\Gamma_A=\left(\begin{array}{cccc} 1&2&2\\2&1&-2\\2&-2&1\end{array}\left|\begin{array}{cccc}1&0&0\\0&1&0\\0&0&1\end{array}\right.\right).$

 

Обозначив через $\gamma_1, \gamma_2, \gamma_3$ строки матрицы $\Gamma_A,$ произведем над ними следующие преобразования: $\gamma_1'=\gamma_1,$ $\gamma_2'=\gamma_2-2\gamma_1,$ $\gamma_3'=\gamma_3-2\gamma_1$

$\gamma_1''=\gamma_1',$ $\gamma_2''=\gamma_2'-2\gamma_3',$ $\gamma_3''=\gamma_3'-2\gamma_2'$

 

$\gamma_1'''=\gamma_1''-\frac{2}{9}\gamma_2''-\frac{2}{9}\gamma_3'',$ $\gamma_2'''=\frac{1}{9}\gamma_2'',$ $\gamma_3'''=\frac{1}{9}\gamma_3''$

 

 

Получаем $\left(\begin{array}{cccc} 1&2&2\\2&1&-2\\2&-2&1\end{array}\left|\begin{array}{cccc}1&0&0\\0&1&0\\0&0&1\end{array}\right.\right)\sim $ $\left(\begin{array}{cccc} 1&2&2\\0&-3&-6\\0&-6&-3\end{array}\left|\begin{array}{cccc}1&0&0\\-2&1&0\\-2&0&1\end{array}\right.\right)\sim$

 

$\left(\begin{array}{cccc} 1&2&2\\0&9&0\\0&0&9\end{array}\left|\begin{array}{cccc}1&0&0\\2&1&-2\\2&-2&1\end{array}\right.\right)\sim $ $\left(\begin{array}{cccc} 1&0&0\\0&1&0\\0&0&1\end{array}\left|\begin{array}{cccc}\frac{1}{9}&\frac{2}{9}&\frac{2}{9}\\\frac{2}{9}&\frac{1}{9}&-\frac{2}{9}\\\frac{2}{9}&-\frac{2}{9}&\frac{1}{9}\end{array}\right.\right)$

Следовательно, $A^{-1}=\begin{pmatrix}\frac{1}{9}&\frac{2}{9}&\frac{2}{9}\\\frac{2}{9}&\frac{1}{9}&-\frac{2}{9}\\\frac{2}{9}&-\frac{2}{9}&\frac{1}{9}\end{pmatrix}.$ 

Ответ: $A^{-1}=\begin{pmatrix}\frac{1}{9}&\frac{2}{9}&\frac{2}{9}\\\frac{2}{9}&\frac{1}{9}&-\frac{2}{9}\\\frac{2}{9}&-\frac{2}{9}&\frac{1}{9}\end{pmatrix}.$ 

Отрогональной матрицей называется матрица, для которой $A^{-1}=A^T.$

 

Домашнее задание:

3.105. Доказать, что любую матрицу $A$ можно представить, и при этом единственным образом, в виде $A=B+C, $ где $B-$ симметричная, а $C-$ кососимметричная матрицы.

Методом присоедененной матрицы найти обратные для следующих матриц:

3.108.  $A=\begin{pmatrix}\cos\alpha &-\sin\alpha\\\sin\alpha&\cos\alpha\end{pmatrix}.$

Ответ:   $A^{-1}=\begin{pmatrix}\cos\alpha &\sin\alpha\\-\sin\alpha&\cos\alpha\end{pmatrix}.$

 

 

3.110.  $A=\begin{pmatrix}3&-4&5\\2&-3&1\\3&-5&-1\end{pmatrix}.$

 Ответ:  $A^{-1}=\begin{pmatrix}-8&29&-11\\-5&18&-7\\1&-3&1\end{pmatrix}.$

 

3.112.  $A=\begin{pmatrix}1&1&1&1\\1&1&-1&-1\\1&-1&0&0\\0&0&1&-1\end{pmatrix}.$

Ответ: $A^{-1}=\begin{pmatrix}1/4&1/4&1/2&0\\1/4&1/4&-1/2&0\\1/4&-1/4&0&1/2\\1/4&-1/4&0&-1/2\end{pmatrix}.$

 

Методом элементарных преобразований найти обратную для следующей матрицы:

3.114. $A=\begin{pmatrix}2&7&3\\3&9&4\\1&5&3\end{pmatrix}.$

Ответ: $A^{-1}=\begin{pmatrix}-7/3&2&-1/3\\5/3&-1&-1/3\\-2&1&1\end{pmatrix}.$

 

Решить матричное уравнение:

3.125. $X\cdot\begin{pmatrix}5&3&1\\1&-3&-2\\-5&2&1\end{pmatrix}=$ $\begin{pmatrix}-8&3&0\\-5&9&0\\-2&15&0\end{pmatrix}.$

Ответ: $A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}.$

 

 

 

 

 

 

Добавить комментарий


Защитный код
Обновить