Рейтинг:   / 4
ПлохоОтлично 

Частные производные, дифференциал, производная по направлению, градиент.

Список литературы:

1. Ефимов А.В. (ред.), Демидович Б.П. (ред.). Сборник задач по математике для ВТУЗОВ. Линейная алгебра и основы математического анализа. Часть 1. 1991. 481 с. 

2. Б. П. Демидович. Сборник задач и упражнений по математическому анализу 624 стр. М.: "ЧеРо", 1997

 

Пусть $(x_1, ..., x_k, .., x_n) -$  произвольная фиксированная точка из области определения функции $u=f(x_1, ..., x_n).$ Придавая значению переменной $x_k\,\,\, (k=1, 2, ..., n)$ приращение $\delta x_k,$ рассмотрим предел $$\lim\limits_{\delta x_k\rightarrow 0}\frac{f(x_1,...,x_k+\delta x_k,...,x_n)-f(x_1,...,x_k,...,x_n)}{\delta x_k}.$$

Этот предел называется частной производной (1-го порядка) данной функции по переменной $x_k$ в точке $(x_1, ..., x_n)$ и обозначается $\frac{\partial u}{\partial x_k}$ или $f'_{x_k}(x_1, ..., x_n).$

Частные производные вычисляются по обычным правилам и формулам дифференцирования (при этом все переменные, кроме $x_k,$ рассматриваются как постоянные).

Частными производными 2-го порядка функции $u=f(x_1, x_2, ..., x_n)$ называются частные производные от ее частных производных первого порядка. Производные второго порядка обозначаются следующим образом: $$\frac{\partial}{\partial x_k}\left(\frac{\partial u}{\partial x_k}\right)=\frac{\partial^2u}{\partial x^2_k}=f''_{x_kx_k}(x_1, x_2, ..., x_k, ..., x_n).$$ $$\frac{\partial}{\partial x_l}\left(\frac{\partial u}{\partial x_k}\right)=\frac{\partial^2u}{\partial x_k\partial x_l}=f''_{x_kx_l}(x_1, x_2, ..., x_k, ..., x_l, ..., x_n).$$ и т. д.

Аналогично определяются и обозначаются частные производные порядка выше второго.

Примеры:

Найти  частные производные 1-го и 2-го порядков от заданных функций:

7.55. $z=x^5+y^5-5x^3y^3.$

Решение.

$$z'_x=(x^5+y^5-5x^3y^3)'_x=5x^4-15x^2y^3;$$

$$z'_y=(x^5+y^5-5x^3y^3)'_y=5y^4-15x^3y^2;$$

$$z'_{xx}=(5x^4-15x^2y^3)'_x=20x^3-30xy^3;$$

$$z'_{xy}=(5x^4-15x^2y^3)'_y=-45x^2y^2;$$

$$z'_{yy}=(5y^4-15x^3y^2)'_y=20y^3-30x^3y;$$

$$z'_{yx}=(5y^4-15x^3y^2)'_x=-45x^2y^2.$$

Ответ: $z'_x=5x^4-15x^2y^3;$ $z'_y=5y^4-15x^3y^2;$ $z'_{xx}=20x^3-30xy^3;$ $z'_{xy}=-45x^2y^2;$ $z'_{yy}=20y^3-30x^3y;$ $z'_{yx}=-45x^2y^2.$

 

7.57. $z=\frac{xy}{\sqrt{x^2+y^2}}.$

Решение.

$$z'_x=\left(\frac{xy}{\sqrt{x^2+y^2}}\right)'_x=\frac{y\sqrt{x^2+y^2}-xy\frac{2x}{2\sqrt{x^2+y^2}}}{x^2+y^2}=\frac{y(x^2+y^2)-x^2y}{(x^2+y^2)\sqrt{x^2+y^2}}=$$ $$=\frac{y^3}{(x^2+y^2)\sqrt{x^2+y^2}};$$

$$z'_y=\left(\frac{xy}{\sqrt{x^2+y^2}}\right)'_y=\frac{x\sqrt{x^2+y^2}-xy\frac{2y}{2\sqrt{x^2+y^2}}}{x^2+y^2}=\frac{x(x^2+y^2)-xy^2}{(x^2+y^2)\sqrt{x^2+y^2}}=$$ $$=\frac{x^3}{(x^2+y^2)\sqrt{x^2+y^2}};$$

$$z'_{xx}=\left(\frac{y^3}{(x^2+y^2)^{3/2}}\right)'_x=-\frac{3}{2}y^32x(x^2+y^2)^{-5/2}=-3y^3x(x^2+y^2)^{-5/2};$$

$$z'_{xy}=\left(\frac{y^3}{(x^2+y^2)^{3/2}}\right)'_y=\frac{3y^2(x^2+y^2)^{3/2}-\frac{3}{2}y^3(x^2+y^2)^{1/2}\cdot 2y}{(x^2+y^2)^3}=$$ $$=\frac{3y^2(x^2+y^2)-3y^4}{(x^2+y^2)^{5/2}}=\frac{3y^2x^2}{(x^2+y^2)^{5/2}};$$

$$z'_{yy}=\left(\frac{x^3}{(x^2+y^2)^{3/2}}\right)'_y=-\frac{3}{2}x^32y(x^2+y^2)^{-5/2}=-3x^3y(x^2+y^2)^{-5/2};$$

$$z'_{yx}=\left(\frac{x^3}{(x^2+y^2)^{3/2}}\right)'_x=\frac{3x^2(x^2+y^2)^{3/2}-\frac{3}{2}x^3(x^2+y^2)^{1/2}\cdot 2x}{(x^2+y^2)^3}=$$ $$=\frac{3x^2(x^2+y^2)-3x^4}{(x^2+y^2)^{5/2}}=\frac{3x^2y^2}{(x^2+y^2)^{5/2}}.$$

Ответ: $z'_x=\frac{y^3}{(x^2+y^2)\sqrt{x^2+y^2}};$ $z'_y=\frac{x^3}{(x^2+y^2)\sqrt{x^2+y^2}};$ $z'_{xx}=-3y^3x(x^2+y^2)^{-5/2};$ $z'_{xy}=\frac{3y^2x^2}{(x^2+y^2)^{5/2}};$ $z'_{yy}=-3x^3y(x^2+y^2)^{-5/2};$ $z'_{yx}=\frac{3x^2y^2}{(x^2+y^2)^{5/2}}.$

 

7.61.$z=\ln(x^2+y^2).$

Решение.

$$z'_x=\left(\ln(x^2+y^2)\right)'_x=\frac{2x}{x^2+y^2};$$

$$z'_y=\left(\ln(x^2+y^2)\right)'_y=\frac{2y}{x^2+y^2};$$

$$z'_{xx}=\left(\frac{2x}{x^2+y^2}\right)'_x=\frac{2(x^2+y^2)-2x\cdot 2x}{x^2+y^2}=\frac{2(-x^2+y^2)}{x^2+y^2};$$

$$z'_{xy}=\left(\frac{2x}{x^2+y^2}\right)'_y=2x\cdot 2y\frac{-1}{(x^2+y^2)^2}=\frac{-4xy}{(x^2+y^2)^2};$$

$$z'_{yy}=\left(\frac{2y}{x^2+y^2}\right)'_x=\frac{2(x^2+y^2)-2y\cdot 2y}{x^2+y^2}=\frac{2(x^2-y^2)}{x^2+y^2};$$

$$z'_{yx}=\left(\frac{2y}{x^2+y^2}\right)'_x=2y\cdot 2x\frac{-1}{(x^2+y^2)^2}=\frac{-4xy}{(x^2+y^2)^2}.$$

Ответ: $z'_x=\frac{2x}{x^2+y^2};$ $z'_y=\frac{2y}{x^2+y^2};$ $z'_{xx}=\frac{2(-x^2+y^2)}{x^2+y^2};$ $z'_{xy}=\frac{-4xy}{(x^2+y^2)^2};$ $z'_{yy}=\frac{2(x^2-y^2)}{x^2+y^2};$ $z'_{yx}=\frac{-4xy}{(x^2+y^2)^{2}}.$

 

7.66. Найти $f'_x(3, 2),\, f'_y(3, 2),$ $f'_{xx}(3, 2),\, f'_{xy}(3, 2),$ $f'_{yy}(3, 2),$ если $f(x, y)=x^3y+xy^2-2x+3y-1.$

Решение.

Найдем частные производные:

$$f'_x=\left(x^3y+xy^2-2x+3y-1\right)'_x=3x^2y+y^2;$$

$$f'_y=\left(x^3y+xy^2-2x+3y-1\right)'_y=x^3+2xy+3;$$

$$f'_{xx}=\left(3x^2y+y^2\right)'_x=6xy;$$

$$f'_{xy}=\left(3x^2y+y^2\right)'_y=3x^2+2y;$$

$$f'_{yy}=\left(x^3+2xy+3\right)'_x=2x.$$

Теперь найдем значения частных производных в точке $(3, 2):$

$$f'_x(3, 2)=(3x^2y+y^2)|_{(3,2)}=54+4=58;$$

$$f'_y(3, 2)=(x^3+2xy+3)|_{(3,2)}=27+12+3=42;$$

$$f'_{xx}(3, 2)=6xy|_{(3,2)}=36;$$

$$f'_{xy}(3, 2)=(3x^2+2y)|_{(3,2)}=27+4=31;$$

$$f'_{yy}(3, 2)=2x|_{(3,2)}=6.$$

Ответ: $f'_x(3, 2)=58,\, f'_y(3, 2)=42,$ $f'_{xx}(3, 2)=36,\, f'_{xy}(3, 2)=31,$ $f'_{yy}(3, 2)=4.$

 

7.79. Показать, что $\left(\frac{\partial z}{\partial x}\right)^2+\frac{\partial z}{\partial y}+x+z=0,$ если $z=4e^{-2y}+(2x+4y-3)e^{-y}-x-1.$

Решение.

Найдем частные производные:

$$\frac{\partial z}{\partial x}=(4e^{-2y}+(2x+4y-3)e^{-y}-x-1)'_x=2e^{-y}-1;$$

$$\frac{\partial z}{\partial y}=(4e^{-2y}+(2x+4y-3)e^{-y}-x-1)'_y=-8e^{-2y}+4e^{-y}-(2x+4y-3)e^{-y}.$$

$$\left(\frac{\partial z}{\partial x}\right)^2+\frac{\partial z}{\partial y}+x+z=$$ $$=\left(2e^{-y}-1\right)^2+\left(-8e^{-2y}+4e^{-y}-(2x+4y-3)e^{-y}\right)+$$ $$+x+4e^{-2y}+(2x+4y-3)e^{-y}-x-1=$$ $$=4e^{-2y}-4e^{-y}+1-8e^{-2y}+4e^{-y}-2xe^{-y}-4ye^{-y}+3e^{-y}+$$ $$+4e^{-2y}+2xe^{-y}+4ye^{-y}-3e^{-y}-1=0.$$ 

Ответ: доказано.

  

Для дифференциала функции $u=f(x_1, x_2,...,x_n)$ справедлива формула $$du=\frac{\partial u}{\partial x_1}dx_1+\frac{\partial u}{\partial x_2}dx_2+...+\frac{\partial u}{\partial x_n}dx_n.$$

 

Функции $u, \, v$ нескольких переменных подчиняются обычным правилам дифференцирования: $$d(u+v)=du+dv,$$ $$d(uv)=vdu+udv,$$ $$d\left(\frac{u}{v}\right)=\frac{vdu-udv}{v^2}.$$

При достаточно малом $\rho=\sqrt{\Delta x_1^2+\Delta x_2^2+...+\Delta x_n^2}$ для дифференцируемой функции $u=f(x_1, x_2, ..., x_n)$ имеют место приближенные равенства $$\Delta u\approx du,$$ $$f(x_1+\Delta x_1,\, x_2+\Delta x_2,...,\, x_n+\Delta x_n)\approx f(x_1, x_2, ..., x_n)+df(x_1, x_2, ..., x_n).$$

 

Примеры:

Найти дифференциалы функций:

7.89. $z=\ln(y+\sqrt{x^2+y^2}).$

Решение.

$$dz=z'_xdx+z'_ydy.$$

$$z'_x=(\ln(y+\sqrt{x^2+y^2}))'_x=\frac{1}{y+\sqrt{x^2+y^2}}(y+\sqrt{x^2+y^2})'_x=\frac{1}{y+\sqrt{x^2+y^2}}\frac{1}{2\sqrt{x^2+y^2}}(x^2+y^2)'_x=$$ $$=\frac{1}{y+\sqrt{x^2+y^2}}\frac{1}{2\sqrt{x^2+y^2}}2x=\frac{x}{y\sqrt{x^2+y^2}+x^2+y^2}.$$

$$z'_y=(\ln(y+\sqrt{x^2+y^2}))'_y=\frac{1}{y+\sqrt{x^2+y^2}}(y+\sqrt{x^2+y^2})'_y=$$ $$=\frac{1}{y+\sqrt{x^2+y^2}}\left(1+\frac{1}{2\sqrt{x^2+y^2}}(x^2+y^2)'_y\right)=$$ $$=\frac{1}{y+\sqrt{x^2+y^2}}\left(1+\frac{1}{2\sqrt{x^2+y^2}}2y\right)=\frac{1}{y+\sqrt{x^2+y^2}}+\frac{y}{\sqrt{x^2+y^2}(y+\sqrt{x^2+y^2})}=$$ $$=\frac{\sqrt{x^2+y^2}+y}{(y+\sqrt{x^2+y^2})\sqrt{x^2+y^2}}=\frac{1}{\sqrt{x^2+y^2}}.$$

$$dz=\frac{x}{y\sqrt{x^2+y^2}+x^2+y^2}dx+\frac{1}{\sqrt{x^2+y^2}}dy.$$

Ответ: $dz=\frac{x}{y\sqrt{x^2+y^2}+x^2+y^2}dx+\frac{1}{\sqrt{x^2+y^2}}dy.$

 

7.91. $z=\ln\cos\frac{x}{y}.$

Решение.

$$dz=z'_xdx+z'_ydy.$$

Найдем частные производные:

$$z'_x=(\ln\cos\frac{x}{y})'_x=\frac{1}{\cos\frac{x}{y}}(\cos\frac{x}{y})'_x=-\frac{1}{\cos\frac{x}{y}}\sin\frac{x}{y}(\frac{x}{y})'_x=$$ $$=-\frac{1}{\cos\frac{x}{y}}\sin\frac{x}{y}\frac{1}{y}.$$

$$z'_y=(\ln\cos\frac{x}{y})'_y=\frac{1}{\cos\frac{x}{y}}(\cos\frac{x}{y})'_y=-\frac{1}{\cos\frac{x}{y}}\sin\frac{x}{y}(\frac{x}{y})'_y=$$ $$=\frac{1}{\cos\frac{x}{y}}\sin\frac{x}{y}\frac{x}{y^2}.$$

$$dz=\left(-\frac{1}{\cos\frac{x}{y}}\sin\frac{x}{y}\frac{1}{y}\right)dx+\left(\frac{1}{\cos\frac{x}{y}}\sin\frac{x}{y}\frac{x}{y^2}\right)dy=-\frac{tg\frac{x}{y}}{y}dx+\frac{xtg\frac{x}{y}}{y^2}.$$

Ответ: $dz=-\frac{tg\frac{x}{y}}{y}dx+\frac{xtg\frac{x}y{}}{y^2}dy.$

 

7.95. Вычислить приближенно $(2,01)^{3,03}.$

Решение.

Искомое число будем рассматривать как значение функции $f(x, y)=x^y$ при $x=x_0+\Delta x, y=y_0+\Delta y,$ если $x_0=2, y_0=3,$ $\Delta x=0,01,$ $\Delta y=0,03.$  Имеем:

$$f(2, 3)=2^3=8,$$

$$\Delta f(x, y)\approx d f(x, y)=yx^{y-1}dx+x^y\ln xdy$$

$$\Delta f(2, 3)\approx 3\cdot 2^{3-1}\cdot 0,01+2^3\ln 2\cdot0,03\approx 0,06+0,17=0,23.$$

Следовательно, $(2,01)^{3,03}\approx 8+0,23=8,23.$

Ответ: $8,23.$

 Производная в данном направлении.

Если направление $l$ в пространстве $Oxyz$ характеризуется направляющими косинусами $\{\cos\alpha, \cos\beta, \cos\gamma\}$ и функция $u=f(x, y, z)$ дифференцируема, то производная по направлению $l$ вычисляется по формуле 

$$\frac{\partial u}{\partial l}=\frac{\partial u}{\partial x}\cos\alpha+\frac{\partial u}{\partial y}\cos\beta+\frac{\partial u}{\partial z}\cos \gamma.$$

 

Скорость наибольшего роста функций в данной точке, по величине и направлению, определяется вектором - градиентом функции

$$grad u=\frac{\partial u}{\partial x}i+\frac{\partial u}{\partial y}j+\frac{\partial u}{\partial z}k,$$ величина которого равна

$$|grad u|=\sqrt{\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2+\left(\frac{\partial u}{\partial z}\right)^2}.$$

Примеры: (Демидович)

3341. Найти производную функции $z=x^2-y^2$ в точке $M(1, 1)$ в направлении $l,$ составляющем угол $\alpha=\pi/3$ с положительным направлением оси $Ox.$

Решение.

Направление $l$ характеризуется направляющими косинусами $\cos\alpha=\cos\pi/3=1/2;$

$\cos\beta=\cos(\pi/2-\pi/3)=\cos\pi/6=\sqrt{3}/2.$

Производную по направлению ищем по формуле $$\frac{\partial z}{\partial l}=\frac{\partial z}{\partial x}\cos\alpha+\frac{\partial z}{\partial y}\cos\beta.$$

$$z'_x=2x;$$

$$z'_y=-2y;$$ 

$$\frac{\partial z}{\partial l}=2x\cdot\frac{1}{2}-2y\cdot\frac{\sqrt 3}{2}.$$

$$\frac{\partial z}{\partial l}=2\cdot 1\cdot\frac{1}{2}-2\cdot 1\cdot\frac{\sqrt 3}{2}=1-\sqrt 3.$$

Ответ: $1-\sqrt 3.$

 

3345. Найти производную функции $u=xyz$ в точке $M(1, 1, 1)$ в направлении $l(\cos\alpha, \cos\beta, \cos\gamma).$ Чему равна величина градиента функции в этой точке?

Решение.

Направление $l$ характеризуется направляющими косинусами 

Производную по направлению ищем по формуле $$\frac{\partial u}{\partial l}=\frac{\partial u}{\partial x}\cos\alpha+\frac{\partial u}{\partial y}\cos\beta+\frac{\partial u}{\partial z}\cos \gamma.$$

$$u'_x=yz;$$

$$u'_y=xz;$$

$$u'_z=xy,$$ $$\frac{\partial u}{\partial l}=yz\cos\alpha+xz\cos\beta+xy\cos \gamma.$$

$$\frac{\partial u}{\partial l}|_{M(1, 1, 1)}=\cos\alpha+\cos\beta+\cos \gamma.$$

$$grad u=(yz, xz, xy);$$

$$grad u|_{M(1, 1, 1)}=(1, 1, 1);$$

$$|grad u| _{M(1, 1, 1)}=\sqrt{1+1+1}=\sqrt 3$$

Ответ: $\frac{\partial u}{\partial l}=\cos\alpha+\cos\beta+\cos\gamma; |grad u|=\sqrt{3}.$

 

 

 

 

 

Добавить комментарий


Защитный код
Обновить