Рейтинг:  4 / 5

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна
 

Плоскость в пространстве, всевозможные уравнения, расстояние от точки до плоскости.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

 

Существуют такие формы записи уравнения плоскости:

1) $Ax+By+Cz+D=0 -$ общее уравнение плоскости $P,$ где $\overline{N}=(A, B, C) -$ нормальный вектор плоскости $P.$

ploskost1

 

2) $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$  уравнение плоскости $P,$ которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $\overline{N}=(A, B, C).$ Вектор $\overline N$ называется нормальным вектором плоскости.

ploskost2

 

3) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 -$  уравнение плоскости в отрезках на осях, где $a,$  $b$ и $c -$ величины отрезков, которые плоскость отсекает на осях координат.

ploskost3

 

4) $\begin{vmatrix}x-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&x_2-x_1&x_3-x_1\end{vmatrix}=0 - $ уравнение плоскости, которая проходит через три точки $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ и $C(x_3, y_3, z_3).$ 

 

ploskost4

 

5) $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0 -$ нормальное уравнение плоскости, где $\cos\alpha, \cos\beta$ и $\cos\gamma -$ направляющие косинусы нормального вектора $\overline{N},$ направленного из начала координат в сторону плоскости, а $p>0 -$ расстояние от начала координат до плоскости.

 

Общее уравнение плоскости приводится к нормальному, путем умножения на нормирующий множитель $\mu=-\frac{sgn D}{\sqrt{A^2+B^2+C^2}}.$

 

Расстояние от точки $M(x_0, y_0, z_0)$ до плоскости $P: Ax+By+Cz+D=0$ вычисляется по формуле $$d=\left|\frac{Ax_0+By_0+Cz_0+D}{\sqrt{A^2+B^2+C^2}}\right|.$$

 {jumi[*3]}

Примеры:

2.180.

а) Заданы плоскость $P: -2x+y-z+1=0$ и точка $M(1, 1, 1).$ Написать уравнение плоскости $P',$ проходящей через точку $M$ параллельно плоскости $P$ и вычислить расстояние $\rho(P, P').$ 

Решение.

Так как п.лоскости $P$ и $P'$ параллельны, то нормальный вектор для плоскости $P$ будет также нормальным вектором для плоскости $P'.$ Из уравнения плоскости получаем $\overline{N}=(-2, 1, -1).$

Далее запишем уравнение плоскости по формуле (2): $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$  уравнение плоскости, которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $\overline{N}=(A, B, C).$ 

$-2(x-1)+(y-1)-(z-1)=0\Rightarrow -2x+y-z+2=0.$

Ответ: $-2x+y-z+2=0.$

 

 

 

2.181. 

а) Написать уравнение плоскости $P',$ проходящей через заданные точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ перпендикулярно заданной плоскости $P: -x+y-1=0.$

Решение.

Из уравнения плоскости $P,$ находим ее нормальный вектор $\overline{N}=(-1, 1, 0).$ Плоскость, перпендикулярная плоскости $P,$ параллельна ее нормальному вектору. Отсюда следует, что можно выбрать точку $M_3(x, y, z)\in P'$ такую, что что $\overline{M_1M_3}||\overline{N}.$

$\overline{M_1M_3}=(x-1, y-2, z).$

Условие коллинеарности векторов $\overline{M_1M_3}$ и $\overline{N}:$ $\frac{x_{M_1M_3}}{x_N}=\frac{y_{M_1M_3}}{y_N}=\frac{z_{M_1M_3}}{z_N}.$

Поскольку $z_N=0,$ то есть вектор $N\in XoY,$ то $z_{M_1M_3}=0.$

$\frac{x-1}{-1}=\frac{y-2}{1}.$ Пусть $x=2,$ тогда $y=1.$

Мы нашли точку $M_3=(2, 1, 0).$

Так как точка $M_1\in P',$ то и $M_3\in P'.$ Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(2, 1, 0).$

$\begin{vmatrix}x-1&y-2&z\\2-1&1-2&1\\2-1&1-2&0-0\end{vmatrix}=0 \Rightarrow $

$\begin{vmatrix}x-1&y-2&z\\1&-1&1\\1&-1&0\end{vmatrix}=0 \Rightarrow $

$(x-1)(-1)0+(-1)z+(y-2)-(-1)z-(-1)(x-1)-(y-2)0=0\Rightarrow$ $\Rightarrow-z+y-2+z+x-1=0\Rightarrow x+y-3=0.$

Ответ: $x+y-3=0.$ 

 

2.182.

а) Написать уравнение плоскости $P,$ проходящей через точку $M(1, 1, 1)$ параллельно векторам $a_1(0, 1, 2)$ и $a_2(-1, 0, 1).$ 

Решение.

Поскольку вектор $[a_1, a_2]$ перпендикулярен плоскости векторов $a_1$ и $a_2$ (см. векторное произведение), то он будет также перпендикулярен искомой плоскости. То есть вектор $[a_1, a_2]$ является нормальным для плоскости $P.$ Найдем этот вектор:

$[a_1, a_2]=\begin{vmatrix}i&j&k\\0&1&2\\-1&0&1\end{vmatrix}=i(1-0)-j(0+2)+k(0+1)=i-2j+k.$

Таким образом $\overline{N}=[a_1, a_2]=(1, -2, 1).$

Теперь можно найти уравнение плоскости $P,$ по формуле (2), как плоскости, проходящей через точку $M(1, 1, 1)$ перпендикулярно  вектору $\overline N=(1, -2, 1):$

$1(x-1)-2(y-1)+1(z-1)=0\Rightarrow$

$x-2y+z=0.$

Ответ: $x-2y+z=0.$

 

 

2.183.

а) Написать уравнение плоскости $P,$ проходящей через точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ параллельно вектору $a=(3, 0, 1).$

Решение.

Поскольку вектор $a$ параллелен плоскости $P,$ то для всякого вектора $\overline{M_1M_3},$ параллельного вектору $a,$ точка $M_3\in P.$

Пусть $M_3=(x, y, z).$ Тогда $\overline{M_1M_3}=(x-1, y-2, z).$ Так как $\overline{M_1M_3}||a,$ то $\frac{x_{M_1M_3}}{x_а}=\frac{y_{M_1M_3}}{y_а}=\frac{z_{M_1M_3}}{z_а}.$ $y_a=0,$ то есть вектор $a\in XoZ$ и  всякий параллельный ему вектор так же будет принадлежать этой плоскости. Таким образом, $y_{M_1M_3}=y-2=0\Rightarrow y=2.$

Из условия параллельности векторов имеем $\frac{x-1}{3}=\frac{z}{1}.$ Пусть $x=4,$ тогда $z=1.$

Мы получили точку $M_3=(4, 2, 1).$

Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(4, 2, 1).$

$\begin{vmatrix}x-1&y-2&z\\2-1&1-2&1\\4-1&2-2&1\end{vmatrix}=0 \Rightarrow $

$\begin{vmatrix}x-1&y-2&z\\1&-1&1\\3&0&1\end{vmatrix}=0 \Rightarrow $

$(x-1)(-1)1+1\cdot z\cdot 0+(y-2)3-3(-1)z-0\cdot 1\cdot(x-1)-1(y-2)1=0\Rightarrow$

$\Rightarrow -x+1+3y-6+3z-y+2=0\Rightarrow -x+2y+3z-3=0.$

Ответ: $-x+2y+3z-3=0.$ 

 

2.184.

а) Написать уравнение плоскости, проходящей через три заданные точки $M_1(1, 2,0),$ $M_2(2, 1, 1)$ и $M_3(3, 0, 1).$ 

Решение.

Воспользуемся формулой (4):

$\begin{vmatrix}x-1&y-2&z\\2-1&1-2&1\\3-1&0-2&1\end{vmatrix}=0 \Rightarrow $

$\begin{vmatrix}x-1&y-2&z\\1&-1&1\\2&-2&1\end{vmatrix}=0 \Rightarrow $

$(x-1)(-1)1+z(-2)+2(y-2)1-2(-1)z-(-2)(x-1)-1(y-2)1=0\Rightarrow$

$\Rightarrow -x+1+-2z+2y-4+2z+2x-2-y+2=0\Rightarrow x+y-3=0.$

Ответ: $x+y-3=0.$ 

 

 {jumi[*4]}