Рейтинг:  4 / 5

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна
 

Деление отрезка в заданном отношении (векторный и координатный способы).

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Зная координаты точек $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$ и отношение $\lambda,$ в котором точка $M$ делит направленный отрезок $\overline{M_1M_2},$ найдем координаты точки $M.$

Пусть $O -$ начало координат. Обозначим $\overline{OM_1}=r_1,$ $\overline{OM_2}=r_2,$ $\overline{OM}=r.$ Так как, $$\overline{M_1M}=r-r_1, \overline{MM_2}=r_2-r,$$ то $r-r_1=\lambda(r_2-r),$ откуда (так как $\lambda\neq -1$) $$r=\frac{r_1+\lambda r_2}{1+\lambda}.$$ Полученная форма и дает решение задачи в векторной форме. Переходя в этой формуле к координатам, получим $$x=\frac{x_1+\lambda x_2}{1+\lambda}, y=\frac{y_1+\lambda y_2}{1+\lambda}, z=\frac{z_1+\lambda z_2}{1+\lambda}.$$

Примеры.

2.57. Отрезок с концами в точках $A(3, -2)$ и $B(6, 4)$ разделен на три равные части. Найти координаты точек деления.

Решение.

Пусть $C(x_C, y_C)$ и $D(x_D, y_D) -$ точки, которые делят отрезок $AB$ на три равные части. Тогда $$\lambda_1=\frac{AC}{CB}=\frac{1}{2};$$ $$x_C=\frac{x_A+\lambda_1x_B}{1+\lambda_1}=\frac{3+\frac{1}{2}\cdot 6}{1+\frac{1}{2}}=4;$$ 

$$y_C=\frac{y_A+\lambda_1y_B}{1+\lambda_1}=\frac{-2+\frac{1}{2}\cdot 4}{1+\frac{1}{2}}=0.$$ 

Далее находим координаты точки $D:$

$$\lambda_2=\frac{AD}{DB}=\frac{2}{1}=2;$$ $$x_D=\frac{x_A+\lambda_2x_B}{1+\lambda_2}=\frac{3+2\cdot 6}{1+2}=5;$$ 

$$y_D=\frac{y_A+\lambda_2y_B}{1+\lambda_2}=\frac{-2+2\cdot 4}{1+2}=2.$$ 

Ответ: $(4, 0)$ и $(5, 2).$

 

2.58.Определить координаты концов отрезка, который точками $C(2, 0, 2)$ и $D(5, -2, 0)$ разделен на три равные части.

Решение.

Пусть $A(x_A, y_A, z_A)$ и $B(x_B, y_B, z_B) -$ концы заданного отрезка.

Выпишем формулы для нахождения координат точки $C$ и подставим известные координаты:

$$\lambda_1=\frac{AC}{CB}=\frac{1}{2};$$ $$x_C=\frac{x_A+\lambda_1x_B}{1+\lambda_1}\Rightarrow 2=\frac{x_A+\frac{1}{2}\cdot x_B}{1+\frac{1}{2}}=2\frac{x_A+\frac{1}{2}\cdot x_B}{3}\Rightarrow $$ $$\Rightarrow 3=x_A+\frac{1}{2}\cdot x_B;$$ 

$$y_C=\frac{y_A+\lambda_1y_B}{1+\lambda_1}\Rightarrow 0=\frac{y_A+\frac{1}{2}\cdot y_B}{1+\frac{1}{2}}\Rightarrow 0=y_A+\frac{1}{2}\cdot y_B;$$

$$z_C=\frac{z_A+\lambda_1z_B}{1+\lambda_1}\Rightarrow 2=\frac{z_A+\frac{1}{2}\cdot z_B}{1+\frac{1}{2}}=2\frac{z_A+\frac{1}{2}\cdot z_B}{3}\Rightarrow$$ $$\Rightarrow 3=z_A+\frac{1}{2}\cdot z_B.$$ 

Аналогичные равенства запишем для точки $D:$

$$\lambda_2=\frac{AD}{DB}=\frac{2}{1}=2;$$ $$x_D=\frac{x_A+\lambda_2x_B}{1+\lambda_2}\Rightarrow 5=\frac{x_A+2\cdot x_B}{1+2}=\frac{x_A+2\cdot x_B}{3}\Rightarrow $$ $$\Rightarrow 15=x_A+2\cdot x_B;$$ 

$$y_D=\frac{y_A+\lambda_2y_B}{1+\lambda_2}\Rightarrow -2=\frac{y_A+2\cdot y_B}{1+2}\Rightarrow -6=y_A+2\cdot y_B;$$

$$z_D=\frac{z_A+\lambda_2z_B}{1+\lambda_2}\Rightarrow 0=\frac{z_A+2\cdot z_B}{1+2}\Rightarrow 0=z_A+2\cdot z_B.$$

Далее запишем полученные уравнения относительно $x_A, x_B;$ $y_A, y_B$  и $z_A, z_B$ попарно в виде систем и решим их:

$$\left\{\begin{array}{lcl}x_A+\frac{1}{2}x_B=3\\x_A+2x_B=15\end{array}\right.\Rightarrow\left\{\begin{array}{lcl}x_A=3-0,5x_B\\3-0,5x_B+2x_B=15\end{array}\right.\Rightarrow$$ $$\Rightarrow\left\{\begin{array}{lcl}x_A=3-0,5\cdot8=-1\\x_B=\frac{12}{1,5}=8\end{array}\right.$$

$$\left\{\begin{array}{lcl}y_A+\frac{1}{2}y_B=0\\y_A+2y_B=-6\end{array}\right.\Rightarrow\left\{\begin{array}{lcl}y_B=-2y_A\\y_A-4y_A=-6\end{array}\right.\Rightarrow$$ $$\Rightarrow\left\{\begin{array}{lcl}y_B=-4\\y_A=2\end{array}\right.$$

$$\left\{\begin{array}{lcl}z_A+\frac{1}{2}z_B=3\\z_A+2z_B=0\end{array}\right.\Rightarrow\left\{\begin{array}{lcl}-2z_B+0,5z_B=3\\z_A=-2z_B\end{array}\right.\Rightarrow$$ $$\Rightarrow\left\{\begin{array}{lcl}z_B=-2\\z_A=4\end{array}\right.$$

Таким образом, получили координаты концов отрезка $A(-1, 2, 4)$ и $B(8, -4, -2).$ 

Ответ: $A(-1, 2, 4),$ $B(8, -4, -2).$